
Department of Computer Science

Learning nonparametric
individualized treatment
response curves

Andrea Cognolato

MASTER’S
THESIS

Aalto University
MASTER’S THESIS 2022

Learning nonparametric
individualized treatment response curves

Andrea Cognolato

Otaniemi, 21 June 2022

Supervisor: professor Pekka Marttinen
Advisor: doctoral candidate Çağlar Hızlı

Aalto University
Department of Computer Science
School of Science

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Andrea Cognolato

Title
Learning nonparametric individualized treatment response curves

School School of Science

Supervisor professor Pekka Marttinen

Cosupervisor professor Mauro Gasparini

Advisor doctoral candidate Çağlar Hızlı

Level Master’s thesis Date 21 June 2022 Pages 70 Language English

Abstract
Thanks to modern medical devices, clinicians are able to obtain accurate and frequent

measurements of the patient’s physiological state. Precision medicine aims to use the vast
amount of data, stored in Electronic Health Records (EHRs), to individualize the treatment
for each patient and design optimal treatment regimes. Learning individualized treatment
responses accurately is an essential step to achieve the goals of precision medicine.

In the literature, the majority of treatment response methods use parametric functions
to model the response curves. The functions are designed using domain knowledge about
the clinical behavior of the treatment and make strong assumptions about the response
curve’s shape. Our goal is to develop a nonparametric model for treatment response
curves that achieves competitive performance against parametric models while allowing
patient-specific customizations.

We analyze the differences between directly modeling the treatment responses with
a Gaussian Process (GP) and modeling the treatment dynamics using a Latent Force
Model (LFM). We evaluate our models on a challenging blood glucose prediction dataset.
Additionally, we use the treatment’s covariates to scale the response curve model. We run
experiments comparing two GP regression models as well as several ways of sharing the
treatment response and treatment covariate model between patients. Our code and data
are public for reproducibility and as a building block for future work. We obtain State-Of-
The-Art (SOTA) performance on our dataset and discover that modeling the treatment
dynamics with a LFM does not significantly improve the predictive performance.

Our results support the case for nonparametric models in treatment response curve
estimation, and lay a solid foundation more sophisticated, GP-based methods. By providing
better estimation of physiological states, we hope to empower clinicians and provide better,
faster, and cheaper healthcare.

Keywords healthcare, treatment response, gaussian process, time series, machine
learning

ii

Contents

Abstract ii

Contents iii

1. Introduction 1

2. Background 4

2.1 Gaussian Processes . 4

2.1.1 Definition . 4

2.1.2 Covariance functions 5

2.1.3 Prediction . 6

2.1.4 Marginal Likelihood 8

2.2 Multi-Output Gaussian Processes 8

2.2.1 Introduction . 8

2.2.2 Intrinsic Coregionalization Model 10

2.3 Ordinary Differential Equations 11

2.3.1 Definition . 12

2.3.2 Linear ODEs . 12

2.3.3 Exact solutions for 1st-order linear ODEs 12

2.4 Latent Force Models . 13

2.4.1 Definition . 13

2.4.2 Output kernel . 14

2.4.3 Output-latent kernel 15

2.5 LFMs for Treatment Response Estimation 17

2.5.1 Model definition 18

2.5.2 Time-marked Latent Forces 18

2.5.3 Output kernel . 18

2.5.4 Limitations . 20

iii

Contents

3. Problem Formulation 22

3.1 Model . 22

3.2 Data . 23

3.3 Task . 24

3.4 Multiple individuals . 24

4. Methods 26

4.1 Time-Limited Treatment Responses 26

4.1.1 Model Definition 26

4.1.2 Non-independent treatments 27

4.1.3 Time-Limited Squared Exponential Kernel . . . 27

4.1.4 Limitations . 28

4.2 Time-Limited Latent Forces 29

4.2.1 Model Definition 29

4.2.2 Limitations . 30

4.3 Treatment Covariates . 31

4.3.1 Linear Scaling . 31

4.4 Individual-level Treatment Sharing 32

4.4.1 Model definition 32

4.4.2 ICM for Individual-level Treatment Sharing . . 33

4.4.3 Kernel . 33

4.4.4 Hierarchical Linear Scaling Coefficients 34

5. Experiments 38

5.1 Simulated Data . 38

5.1.1 Dataset Generation 38

5.1.2 Experiments . 39

5.1.3 Results . 39

5.2 Glucose Data . 43

5.2.1 Dataset . 43

5.2.2 Evaluation Setup and Metrics 43

5.2.3 Experiments . 44

5.2.4 Results . 44

6. Discussion 50

6.1 Summary of results . 50

6.2 Directions for the future . 51

6.3 Possible impact . 51

iv

1. Introduction

The right to health and well-being is one of the fundamental human rights.

Clinicians determine how to treat each patient by combining knowledge

collected from the general population with data relative to the specific

individual. Thus, data is crucial in helping healthcare professionals to

provide the best possible treatment to patients.

The advent of electronic health records (EHR) and modern medical de-

vices has led to a rapid increment of the amounts of medical data available.

Clinicians are now able to obtain accurate and frequent measurements of

the patient’s physiological state, both in real-time and historical.

Using this vast amount of data, precision medicine seeks to improve

the treatment for each patient by providing individualized treatment

strategies. Personalized treatment is possible thanks to the increase in

availability of longitudinal data, where the health state of an individual is

available for long periods of time.

A key task in providing personalized treatments is learning individual-

ized treatment response (ITR) curves. That is, estimating the continuous

response over time of treatments from a time series of the patient’s state.

One example application of ITR curves is to develop optimal dosing strate-

gies for medications.

Previous work models ITRs using parametric curves. These parametric

curves are designed using expert knowledge about the physiological re-

sponse to the treatment. The parametric models presented in the literature

show wide variety in their formulation, using models such as Gaussian

PDFs, mixtures of sigmoid functions, analytical solutions to LTI systems,

and to Dirichlet Process Mixtures.

Various techniques from Bayesian nonparametrics have been used to

model the baseline evolution of physiological covariates and, in some cases,

part of the treatment response curves. But there are only few recent

1

Introduction

examples of modeling the treatment response curve using a fully non-

parametric approach. We claim that nonparametric models are crucial in

achieving the goals of precision medicine, since their flexibility can capture

individual-specific variations much better than a parametric model.

Our approach to solving the ITR estimation problems is to reimplement

current state of the art nonparametrics ITR methods from the literature

and to improve them by incorporating more data and more constraints into

their formulation.

Following existing work on nonparametric ITR, we choose Gaussian

Processes (GPs) as the model for the treatment response curves. The

probabilistic foundations of GPs are crucial to obtain credible intervals for

our predictions, in order to correctly estimate uncertainty. Additionally, we

can easily customize the models and incorporate constraints by designing

new covariance functions, or kernels.

To incorporate domain-specific knowledge about the physiological dynam-

ics of treatments, we turn to Latent Force Models (LFMs). By combining

the mechanistic approach of Ordinary Differential Equation (ODE) model-

ing with nonparametric GPs, LFMs allow having flexible models that will

not make unrealistic predictions.

Current nonparametric models do not try to model continuous treatment

dosages and only allow a finite number of treatment variants. We develop

a method to include any kind of data on the treatment, which we call

treatment covariates, in the prediction. This allows us to predict the effect

of treatments with dosages never before seen in the training dataset.

Our methods are evaluated on their predictive performance for future

treatments. The first set of experiments uses simulated data, in order to

verify the correctness of our implementations. We use a real-world dataset

of blood glucose measurements to evaluate our models on the challenging

task of predicting the impact of meals on the glucose levels.

Our findings show that Gaussian Process-based nonparametric models

can achieve satisfactory performance in ITR estimation task. Additionally

we find that on noisy dataset that are typical in the healthcare field, more

sophisticated models often fail because of their lower noise robustness

features. In our experiments we find that simpler GP models are superior

in terms of predictive performance, training time, and inference time to

the more complex LFM models. Finally, we find that using treatment

covariates to estimate the effect of unseen dosages greatly improves the

predictive performance, but must be used carefully as it is very sensitive

2

Introduction

to noise in the data.

We hope that the results we have showed can provide useful insights for

researchers interested in using nonparametric methods for ITR estimation.

On a broader level, our goal is to have a positive impact in the field of

precision medicine. We believe that providing healthcare practitioners

with better decision-making tools is crucial for improving the quality of

health care and the quality of life of those who need it.

This thesis is structured as follows: Section 2 presents the needed back-

ground to develop the new methods and for the results, starting with

Gaussian Processes and their Multi-Ouput extensions in Sections 2.1 and

2.2. A short introduction to Ordinary Differential Equations is given in

Section 2.3. We proceed to merge GPs an ODEs in Section 2.4, which

develops the formulation of Latent Force Models. The application of Latent

Force Models to Treatment Response Curve estimation is presented in

Section 2.5. Section 3 introduces the task we will use to evaluate our

methods, the notation, and describes the available data. Section 4 presents

the methods we develop, starting with the Time-Limited Squared Expo-

nential Kernel in Section 4.1. We proceed to present a new LFM model,

the Time-Limited Latent Force model in Section 4.2. Then we discuss

how to introduce treatment covariates in Section 4.3 and finally how to

extend our treatment models to multiple patients in Section 4.4. Section 5

presents the experiments and their results, which are divided by dataset

into simulated data and real world data. To conclude, in Section 6 we

summarize the results, discuss their significance and consider directions

for future research.

3

2. Background

2.1 Gaussian Processes

2.1.1 Definition

A Gaussian Process (GP) is a random function. The evaluations of a GP at

a finite number of points form a joint Gaussian distribution [7].

Just like a multivariate normal distribution is completely determined by

its mean vector and covariance matrix, a GP is determined by its mean

function m and covariance function k. We use the following notation to

indicate a real-valued Gaussian process f :

f(·) ∼ GP(m(·), k(·, ·))

where the two functions are defined as follows:

m : R → R

m(x) = E(f(x))

k : R× R → R

k(x, x′) = E((f(x)−m(x))(f(x′)−m(x′)))

Under this definition, the GP is an infinite-dimensional object. This

property is necessary to represent arbitrary functions. In our applications,

we are mainly interested in evaluating the GP at a finite number of points.

This allows us to work with multivariate normal distributions, a much

simpler finite-dimensional object. We use the following notation to denote

a GP evaluated in a finite set of points x ∈ Rn:

4

Background

f = f(x)

f ∼ N (m(x), k(x,x))

2.1.2 Covariance functions

The covariance function, also known as the kernel, is the most important

factor in GP modeling. The function takes two points xi, xj as inputs,

and is equal to the covariance between f(xi), f(xj), the random variables

obtained by evaluating the GP at each one of the two points.

Let xi, xj ∈ R, then:

cov(f(xi), f(xj)) = k(xi, xj)

The behaviour of sampled functions heavily depends on the kernel choice.

Let us now see how different kernels result in different samples. To see

this, we pick an arbitrary set of test points x∗ ∈ Rn∗ . The mean and

covariance functions are evaluated at the test points to create a mean

vector µ ∈ Rn∗ and covariance matrix Σ ∈ Rn∗×n∗ , respectively. Finally, we

sample random vectors from the multivariate normal distribution that we

defined and plot them.

µ = m(x∗)

Σ = k(x∗,x∗)

f∗ ∼ N (µ,Σ)

The three kernels we will use to illustrate the differences are: squared

exponential, periodic, white noise.

k(x, x′) = σ2 exp

(︃
−1

2

(x− x′)2

ℓ2

)︃
k(x, x′) = σ2 exp

(︃
− 2

ℓ2
sin2

(︃
π
|x− x′|

p

)︃)︃

k(x, x′) =

⎧⎪⎨⎪⎩σ2, if x = x′

0, otherwise

Figure 2.1 shows the covariance matrix and samples from each kernel.

5

Background

0 5 10

0

5

10

SquaredExponential

0 5 10

0

5

10

Periodic

0 5 10

0

5

10

White

0 5 10
2

0

2

0 5 10

1

0

0 5 10

2

0

2

Covariance matrix and GP samples
A comparison between kernels

Figure 2.1. Comparison of the covariance matrix and samples from three zero-mean
GPs with three different kernels. Left: A squared exponential kernel with
lengthscale parameter ℓ = 1. Center: A periodic squared-exponential kernel
with lengthscale parameter ℓ = 1 and period parameter p = 1. Right: White
noise kernel. All kernels have scale parameter σ = 1.

2.1.3 Prediction

Having seen how a GP looks like a priori, that is without conditioning it on

some data, let us now see how to incorporate observations. We start by writ-

ing the full joint distributions and then, using the conditioning property of

multivariate Gaussians, we will obtain the GP posterior distribution.

The joint distribution over noiseless training outputs f and test outputs

f∗ is, when assuming zero-mean:⎡⎣ f

f∗

⎤⎦ ∼ N

⎛⎝⎡⎣0
0

⎤⎦ ,

⎡⎣ k(x,x) k(x,x∗)

k(x∗,x) k(x∗,x∗)

⎤⎦⎞⎠ ,

where x are the training inputs, x∗ the test inputs, and where by k(x,x∗)

we denote the Rn×n∗ matrix obtained by evaluating k on all pairs of training

and test inputs.

Using the conditioning property of multivariate Gaussians [8], we can

obtain a closed-form expression for the posterior distribution.

µ∗ = k(x∗,x)k(x∗,x∗)
−1f ,

Σ∗ = k(x∗,x∗)− k(x∗,x)k(x∗,x∗)
−1k(x,x∗),

f∗ | x∗, f ,x ∼ N (µ∗,Σ∗).

Using the same properties, we can obtain the posterior distribution

given noisy observations y = f + ϵ, where ϵ ∈ Rn. This assumes additive,

6

Background

independent and identically distributed (i.i.d.) Gaussian noise. Thus, its

covariance matrix will be, cov(ϵ, ϵ) = σ2
nI. Rewriting the joint distributions

of noisy observations and test outputs gives⎡⎣y
f∗

⎤⎦ ∼ N

⎛⎝⎡⎣0
0

⎤⎦ ,

⎡⎣k(x,x) + σ2
nI k(x,x∗)

k(x∗,x) k(x∗,x∗)

⎤⎦⎞⎠ ,

and the resulting posterior distribution is

µ∗ = k(x∗,x)k(x∗,x∗)
−1y,

Σ∗ = k(x∗,x∗)− k(x∗,x)(k(x∗,x∗) + σ2
nI)

−1k(x,x∗),

f∗ | x∗,y,x ∼ N (µ∗,Σ∗).

Finally, the posterior predictive distribution is obtained by simply adding

σ2
nI to cov(f∗)

y∗ | x∗,y,x ∼ N (µ,Σ∗ + σ2
nI)

In figure 2.2 we see an application of the concepts presented so far. We

fit a GP model to some observations and show the posterior mean, some

samples, as well as the 95% credible intervals.

0 2 4 6 8 10
x

0

1

2

f(x
)

Gaussian Process Regression

Data
GP mean
GP samples
GP mean 95% CI

Figure 2.2. The chart shows an example of Gaussian Process Regression (GPR). The data,
shown as black crosses, is generated by adding i.i.d. Gaussian noise with 0.5
standard deviation to the sin(x) function. A GP model with a squared exponen-
tial kernel is fitted and the three hyperparameters ℓ, σ, σn are estimated by
MAP. We plot the posterior mean, posterior samples, and 2σ credible intervals
with thick blue line, thin blue lines, and shaded blue regions, respectively.

7

Background

2.1.4 Marginal Likelihood

Let us introduce the marginal likelihood p(y). The marginal likelihood is

likelihood p(y | f) integrated over the prior distribution p(f).

p(y) =

∫︂
p(y | f)p(f)df

We call it marginal, since we are marginalizing or "integrating away" the

function values of f .

A closed-form expression for p(y) can be derived by exploiting the fact

that y = f + ϵ, thus

E (y) = E (f) + E (ϵ) = 0,

V(y) = V(f) +V(ϵ) = k(x,x) + σ2
nI,

y ∼ N (0, k(x,x) + σ2
nI),

Finally, we use the definition of log-likelihood and to obtain the formula

log p(y) = −1

2
fT (k(x,x) + σ2

nI)
−1f − 1

2
log |k(x,x) + σ2

nI| −
n

2
log 2π.

The marginal log likelihood can be efficiently computed by using the

Cholesky decomposition instead of directly inverting the covariance matrix.

2.2 Multi-Output Gaussian Processes

2.2.1 Introduction

Until this point, our description of Gaussian Processes has focused on

one-dimensional or real-valued GPs. Let us extend this definition to a

larger class of models, vector-valued or multi-output GPs (MOGPs) [2].

Consider two independent GPs: f1(·), f2(·). f1(·) has zero mean and

covariance function k1(·, ·). f2(·) has zero mean and covariance function

k2(·, ·).

f1(·) ∼ GP(0, k1(·, ·))

f2(·) ∼ GP(0, k2(·, ·))

Assume that we have an observation model with additive i.i.d. Gaussian

8

Background

errors.

y1 = f1 + ϵ1

ϵ1
i.i.d.∼ N (0, σ2

n1)

y2 = f2 + ϵ2

ϵ2
i.i.d.∼ N (0, σ2

n2)

and that we have two datasets of training input and observation pairs.

x1,y1 ∈ RN1

x2,y2 ∈ RN2

We can then write the joint distribution⎡⎣y1

y2

⎤⎦ ∼ N

⎛⎝⎡⎣0
0

⎤⎦ ,

⎡⎣k1(x1,x1) + σ2
n1I 0

0 k2(x2,x2) + σ2
n2I

⎤⎦⎞⎠
Because the two GPs are independent, the covariance matrix is block-

diagonal. In the general non-independent case, the matrix has nonzero

upper right and lower left blocks.

To reinforce our intuition, see figure 2.3. In the left plot we display the

joint covariance matrix for two independent GPs. In the right plot, we take

one sample from the distribution defined by the covariance matrix on the

left. That sample is a vector f ∈ RN1+N2 . We split the vector in its two

components f1,f2 and plot them on top of each other.

0 5 10, 0 5 10

0

5

10,
0

5

10

cov(f(), f())

0 2 4 6 8 10

2

0

2

f1() vs f2()

Figure 2.3. Left: the covariance matrix for the joint distribution of two independent one-
dimensional GPs. For this plot, the two GPs use the same squared exponential
kernel with the only difference being the scale parameters: σ1 = 0.5, σ2 = 2.5.
Observe that this is a block-diagonal matrix. Right: samples from the zero-
mean GPs using this covariance matrix. Notice how they samples show no
signs of correlation.

9

Background

2.2.2 Intrinsic Coregionalization Model

Instead of directly trying to define a covariance function for MOGPs, we

are going to pick a generative model for our outputs and derive its corre-

sponding covariance function.

We are going to keep the same assumptions as earlier but with one

crucial modification. Let a ∈ Rd.

u(·) ∼ GP(0, k(·, ·))

f(·) = au(·) =

⎡⎢⎢⎢⎣
f1(·)

...

fd(·)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a1u(·)

...

adu(·)

⎤⎥⎥⎥⎦
This model is called Intrinsic Coregionalization Model ICM. In this model,

we assume that all outputs are generated by linearly transforming an

underlying GP u(·).

We now compute the multi-output kernel function for this multi-output

GP. This is a function that, given the indices i, j of two GPs in f and given

two locations x, x′, will be equal to the covariance between fi(x), the i-th

element of f evaluated at x, and fj(x
′), the j-th element of f evaluated at

x′. Let i, j ∈ 1, ..., d, then

cov(fi(·), fj(·)) : N× R× N× R → R

cov(fi(·), fj(·)) = aiajcov(u(·), u(·))

= aiajk(·, ·)

Now that we defined the covariance between two arbitrary output, we

can write in a single matrix expression the full multi-output covariance

10

Background

between all pairs of outputs.

cov(f(·), f(·)) =

⎡⎢⎢⎢⎣
cov(f1(·), f1(·)) ... cov(f1(·), fd(·))

...

cov(fd(·), f1(·)) ... cov(fd(·), fd(·))

⎤⎥⎥⎥⎦ k(·, ·)

=

⎡⎢⎢⎢⎣
a1a1 ... a1ad

...

ada1 ... adad

⎤⎥⎥⎥⎦ k(·, ·)

=

⎡⎢⎢⎢⎣
b11 ... b1d
...

bd1 ... bdd

⎤⎥⎥⎥⎦ k(·, ·)

= aaTk(·, ·)

= Bk(·, ·)

where B ∈ Rd×d is a matrix of rank 1.

We plot the covariance matrix and samples from it in figure 2.4, proceed-

ing in a similar fashion as we did in figure 2.3.

0 5 10, 0 5 10

0

5

10,
0

5

10

cov(f(), f())

0 2 4 6 8 10

2

0

2
f1() vs f2()

Figure 2.4. Left: the covariance matrix for the joint distribution of a Multi-Output Gaus-
sian Process (MOGP) generated using the Intrinsic Coregionalization Model
(ICM). For this plot, the two GPs use squared exponential kernels with scale
parameters: σ1 = 0.5, σ2 = 1.5 and a common lengthscale ℓ = 1. Observe
that this matrix is has a block structure, but it is not block-diagonal. Right:
samples from the zero-mean GPs using this covariance matrix. Notice how
the samples from the 2nd GP f2(·) are, as expected, simply the scaled version
of the 1st GP f1(·).

2.3 Ordinary Differential Equations

The majority of natural phenomenons involve change. To mathematically

describe change, we must be able to write equations that relate varying

quantities.

The derivative y′(x) describes the rate of change of y with respect to x.

11

Background

Hence, we will naturally want to write equations where a function and its

derivative are related. We will call these differential equations.

In our treatment, we will only consider 1-dimensional, single-argument

functions. This allows us to only consider Ordinary Differential Equations

(ODEs).

2.3.1 Definition

Given G, a function of x, y, and the derivatives of y. Then an expression of

the form

y(n) = G(x, y, y′, ..., y(n−1))

is what we call an explicit ordinary differential equation of order n [1].

2.3.2 Linear ODEs

Let ai(x), f(x) be continuous functions of x. If the function G can be written

in the following form:

y(n) = G(x, y, y′, ..., y(n−1)) =
n−1∑︂
i=0

ai(x)y
(i)(x) + f(x)

then we say that it is a linear ordinary differential equation.

The f(x) term is called forcing or source term. If f(x) = 0 then we say

that the ODE is homogeneous, otherwise we call it inhomogeneous.

2.3.3 Exact solutions for 1st-order linear ODEs

Consider an equation of the form

y′(x) + ay(x) = f(x)

where f(x) is a continuous functions of x, a a constant. We have a formula

for the general solution

y(x) = exp(−ax)

∫︂
exp(ax)f(x)dx+ c exp(−at)

where c is an arbitrary real number.

To get a better intuition about the behaviour of this class of equations,

figure 2.5 shows the forcing term and its effect on the solution of an

inhomogeneous linear ODE with constant coefficients.

12

Background

0 2 4 6 8 10
x

1

0

1

Solution of a 1st-order linear inhomogeneous ODE

f(x)
y(x)

Figure 2.5. Solution of a 1st-order linear inhomogeneous ODE. The ODE parameters are
a = 0.15, which we shall call the decay parameter, and f(x) = sin(x) which
we call forcing function. We numerically solve the initial value problem with
initial conditions y(0) = 0 and plot the solution y(x) in orange and the forcing
function f(x) in blue.

2.4 Latent Force Models

Latent Force Models (LFMs) [5, 3] were introduced to bridge the gap

between pure data-driven modeling and purely mechanistic modeling.

Data-driven techniques such as GPs and neural networks make weak

assumptions about the underlying data generating process, thus "letting

the data speak". In mechanistic modeling, the typical paradigm of physics,

the models rely on existing physical laws combined with strong knowledge

driven constraints, often expressed as differential equations.

It is natural to expect a range of models which vary in the strength of

their mechanistic assumptions. Latent Force Models enrich GPs, a data-

driven statistical model, with physics-inspired mechanistic ideas. To do so,

LFMs incorporate differential equations into latent variable GP models. In

our treatment, we will only consider first-order ordinary linear differential

equations. However, in the literature, we see LFMs that use second-order

linear ODEs [3], nonlinear ODEs [5, 6] and Partial Differential Equations

(PDEs) [6].

2.4.1 Definition

We start by considering our mechanistic ODE model.

y′(x) +Dy(x) = B + Sf(x)

We have a first-order linear ordinary differential equation with constant

coefficients and a nonzero forcing function.

The data-driven modeling aspect comes from the fact that we model the

forcing function f(x) using GPs. In this instance, we assume that the

13

Background

latent force comes from a GP with zero-mean and squared exponential

kernel with a length scale parameter ℓ.

kff (x, x
′) = exp

(︃
−1

2

(x− x′)2

ℓ2

)︃
f(·) ∼ GP(0, kff (·, ·))

To become more familiar with this model, let us see in figure 2.6 some

examples of its behaviour with different parameters B,D, S. Because

this model was originally used to model gene transcription processes, the

parameters names are: B basal rate, D decay rate, S sensitivity.

0

10

y0(x) + 0.5y(x) = 5.0+1.5sin(x) y0(x) + 5.5y(x) = 5.0+1.5sin(x)

0 2 4 6 8 10
0

10

y0(x) + 0.5y(x) = 5.0+9.0sin(x)

0 2 4 6 8 10

y0(x) + 5.5y(x) = 5.0+9.0sin(x)
f(x)
y(x)

Figure 2.6. The four panels show the latent force/forcing term of the LFM (blue line) as
well as the numerical solution of the ODE problem (orange line). We give the
solver boundary conditions y(0) = 0. Each panel uses a different combination
of parameters. Notice how increasing the decay rate D greatly reduces the
average value of y(x) while increasing the sensitivity S increases such value.

2.4.2 Output kernel

Using the results from the ODE chapter, we can write a closed-form ex-

pression for y(x). To get rid of the arbitrary c factor, we must assume that

y(0) = B/D.

y(x) =
B

D
+ S exp(−Dx)

∫︂ x

0
f(u) exp(Du)du

In this model, the ODE’s forcing function is a GP. Because the ODE is

linear, its solution is a linear operator of the forcing function. The normal

distribution is closed under linear operations, this also applies to GPs [7].

14

Background

From this we can conclude that the ODE solution y(·) is also a GP.

y(·) ∼ GP(0, kyy(·, ·))

Let us now compute the output kernel kyy analytically.

kyy(x, x
′) = cov(y(x), y(x′))

= E((y(x)−B/D)(y(x′)−B/D))

= E((S exp(−Dx)

∫︂ x

0
f(u) exp(Du)du)

· (S exp(−Dx′)

∫︂ x′

0
f(u′) exp(Du′)du′))

= E(S2 exp(−D(x+ x′))

∫︂ x

0

∫︂ x′

0
f(u)f(u′) exp(D(u+ u′))dudu′)

= S2 exp(−D(x+ x′))

∫︂ x

0

∫︂ x′

0
E(f(u)f(u′)) exp(D(u+ u′))dudu′

= S2 exp(−D(x+ x′))

∫︂ x

0

∫︂ x′

0
kff (u, u

′)) exp(D(u+ u′))dudu′.

Substituting the definition of kff inside the double integral and using the

properties of the error function allows us to obtain a closed-form expression.

kyy(x, x
′) = S2

√
πℓ

2
[h(x, x′) + h(x′, x)]

where

h(x′, x′) =
exp(γ2)

2D
{exp

[︁
−D(x′ − x)

]︁ [︃
erf
(︃
x′ − x

ℓ
− γ

)︃
+ erf

(︂x
ℓ
+ γ
)︂]︃

− exp
[︁
−D(x′ − x)

]︁ [︃
erf
(︃
x′

ℓ
− γ

)︃
+ erf (γ)

]︃
}.

Here erf(x) =
∫︁ x
0 exp(−u2)du and γ = Dℓ/2.

Looking at figure 2.7, we see how the covariance matrix of this kernel

looks like. In this instance, the kernel uses parameters B = 0, D = 0.5, S =

1.5, ℓ = 1.5. Additionally, we take samples from a GP using this kernel and

can indeed verify that they look similar the ODE solutions we see in figure

2.6.

2.4.3 Output-latent kernel

To infer the latent forces that are responsible for the output’s behaviour

we also need an "output-latent" kernel that computes the cross-covariance

between the output y(x) and the latent force f(x′).

15

Background

0 2 4 6 8 10

0

2

4

6

8

10

kyy(,)

0 2 4 6 8 10

2

0

2

y()

Covariance matrix and GP samples
LFM output kernel

Figure 2.7. Left: Covariance matrix of a GP with a LFM output kernel. In this chart,
the kernel uses parameters B = 0, D = 0.5, S = 1.5, ℓ = 1.5. Observe how,
in the top-left corner, all values are very close to zero. Right: samples from
the zero-mean GPs using this covariance matrix. Notice how, near zero, all
of the samples have small values. This is because of the initial condition
y(0) = B/D = 0 which we have used to derive the kernel’s formula.

The derivation for the output-latent kernel follows the sames steps as

the output kernel:

kyf(x, x
′) = cov(y(x), f(x′))

= E((y(x)−B/D)f(x′))

= E((S exp(−Dx)

∫︂ x

0
f(u) exp(Du)du)f(x′))

= E((S exp(−Dx)

∫︂ x

0
f(u)f(x′) exp(Du)du))

= S exp(−Dx)

∫︂ x

0
E(f(u)f(x′)) exp(Du)du

= S exp(−Dx)

∫︂ x

0
kff(u, x

′) exp(Du)du.

Again, for squared exponential kernels this can be obtained explicitly

leading to

kyf(x, x
′) =

√
πℓS

2
exp(γ2) exp(−D(x′ − x))

[︃
erf
(︃
x′ − x

ℓ
− γ

)︃
+ erf

(︂x
ℓ
+ γ
)︂]︃

.

In figure 2.8 we see Gaussian Process Regression (GPR) with a GP that

used the covariance function that we have derived. In the left panels we

plot the data using black crosses as well as the posterior mean, and 2σ

credible intervals with thick blue line, and shaded blue regions, respec-

tively.

The right panel uses the cross-covariance function to estimate the latent

force posterior from data. The latent force posterior is also a GP with the

16

Background

following mean and covariance:

µ∗ = kfy(x∗,x)kyy(x∗,x∗)
−1y,

Σ∗ = kff (x∗,x∗)− kfy(x∗,x)(kyy(x∗,x∗) + σ2
nI)

−1kyf (x,x∗),

f∗ | x∗,y,x ∼ N (µ∗,Σ∗).

The posterior mean (solid orange line) and its 2σ credible interval (shaded

orange region) are plotted. Additionally, we plot the true latent force sin(x)

and verify that it is always inside the shaded interval.

0 2 4 6 8 10

1

0

1

2
y * x, y, x *

0 2 4 6 8 10

1

0

1

f * x, y, x *

Gaussian Process Regression
LFM kernel

Figure 2.8. The chart shows an example of Gaussian Process Regression (GPR) using a
GP kernel based on a Latent Force Model. The data, shown as black crosses, is
generated by giving the sin(x) function to an ODE solver that solves the LFM
ODE problem. Then, to the resulting ODE solution, we add i.i.d. Gaussian
noise with 0.5 standard deviation. A GP model with a LFM kernel is fitted.
Left: The data is plotted using black crosses. We plot the posterior mean, and
2σ credible intervals with thick blue line, and shaded blue regions, respectively.
Right: We plot the estimated latent force (solid orange line) and its 2σ credible
interval (shaded orange region). We plot the true latent force sin(x) and verify
that it is always inside the shaded interval.

2.5 LFMs for Treatment Response Estimation

Up to this point we have introduced Gaussian Processes and Linear Or-

dinary Differential Equations. These two concepts were then merged to-

gether to develop Latent Force Models. We have motivated LFMs as a way

to mix data-driven, weakly mechanistic models like GPs and knowledge-

drive, stronly mechanistic models like ODEs. We will now see a real-world

application of LFMs, as we will use them to model treatment response

curves.

We will present a simplified version of [4]. We limit ourselves to dis-

cussing the model for treatment responses, without introducing the extra

complexity required to model the baseline signal and without discussing

17

Background

how a hierarchical structure can be used to improve the prediction across

multiple individuals.

2.5.1 Model definition

Let τ be the time. Let y(τ) be the physiological quantity we are interested

in modeling. Let t = {tm | m = 1, . . . ,M} be a set of treatment times i.e.

the time at which a specific treatment was administered to the patient.

We write the ODE part of the LFM describing the time evolution of the

physiological quantity

y′(τ) = B −Dy(τ) + S

M∑︂
m=1

f(τ ; tm)

2.5.2 Time-marked Latent Forces

Again, the forcing function f(τ ; tm) is a GP. But, since our goal is to model

treatments, we must add one crucial condition. The effect of the treatment

must be constant before the treatment time tm. To model this we turn to

time-marked or causal GPs.

kff (τ, τ
′; tm) = exp

{︃
− [h(τ − tm)− h(τ ′ − tm)]2

ℓ2

}︃
f(τ ; tm) ∼ GP(0, kff (·, ·; tm)

where h(τ) = τI(τ > 0) is the clipping function that enforces causality by

cancelling any effect before the treatment time.

For clarity, let us now compare in figure 2.9 the covariance matrices and

samples of two GPs using the standard squared exponential kernel and

the time-marked squared exponential kernel, respectively.

2.5.3 Output kernel

Just like we did in the LFM section, we can write the analytical solution to

the ODE. Again, we must assume that y(0) = B/D.

y(τ) =
B

D
+ S

M∑︂
m=1

exp(−Dτ)

∫︂ τ

0
f(u; tm) exp(Du)du

We can now proceed and compute the analytical expression for the output

18

Background

0 5 10

0.0

2.5

5.0

7.5

10.0

kSE(,)

0 2 4 6 8 10

2

0

2
y()

0 5 10

0.0

2.5

5.0

7.5

10.0

kTMSE(,)

0 2 4 6 8 10

2

1

0

1

y()

Covariance matrix and GP samples
Squared Exponential vs Time-Marked Squared Exponential kernels

Figure 2.9. Top left: covariance matrix for a squared exponential (SE) kernel with length
scale ℓ = 1. Top right: samples from a GP with zero mean and SE kernel.
Bottom left: covariance matrix for a time-marked squared exponential (TMSE)
kernel with length scale ℓ = 1 and treatment time tm = 4. Top right: samples
from a GP with zero mean and TMSE kernel.

kernel Let us now compute the output kernel kyy analytically

kyy(τ, τ
′) =cov(y(τ), y(τ ′))

=E((y(τ)−B/D)(y(τ ′)−B/D))

=E((S
M∑︂

m=1

exp(−Dτ)

∫︂ τ

0
f(u; tm) exp(Du)du)

· (S
M∑︂

m′=1

exp(−Dτ ′)

∫︂ τ ′

0
f(u′; t′m) exp(Du′)du′))

=E(S2 exp(−D(τ + τ ′))

·
M∑︂

m=1

M∑︂
m′=1

∫︂ τ

0

∫︂ τ ′

0
f(u; tm)f(u′; tm) exp(D(u+ u′))dudu′)

=S2 exp(−D(τ + τ ′))

·
∫︂ τ

0

∫︂ τ ′

0
E(

M∑︂
m=1

M∑︂
m′=1

f(u; tm)f(u′; t′m)) exp(D(u+ u′))dudu′

= S2 exp(−D(τ + τ ′))

·
∫︂ τ

0

∫︂ τ ′

0

M∑︂
m=1

kff (u, u
′; tm) exp(D(u+ u′))dudu′

We have obtained a formulation similar to the single-force LFM. There are

19

Background

two crucial differences that prohibit us from re-using the same analytical

expression as before. First, kff is now a time-marked squared-exponential.

Second, and most crucially, when simplifying the double summation over

m,m′ to a single one over m we have implicitly assumed independence

between two treatments m ̸= m′. We will revisit this assumption is our

methods section.

While it is possible to obtain a closed-form solution for this kernel, we

will neither present the steps nor the final formulas here. The same goes

for the "cross-covariance" output-latent kernel. For more details check [4]’s

supplementary material or the code samples provided with this document.

In figure 2.10 we can see the result of our efforts. The treatment response

shows exponential growth/decay before the treatment time tm, due to the

constant value of the latent force, and shows SE-like behaviour after.

0 2 4 6 8 10

0

2

4

6

8

10

kyy(,)

0 2 4 6 8 10

2

0

2

y()

Covariance matrix and GP samples
LFM for Treatment Response Estimation output kernel

Figure 2.10. Left: covariance matrix for the kyy output kernel with parameters B =
0, D = 0.5, S = 1.5, tm = 4, ℓ = 1. Right: samples from the output kernel.

2.5.4 Limitations

Let us now discuss some limitations of this model, considering our goals of

using it to predict the effect of treatments on physiological quantities. The

main issues that we have found, when trying to apply this to a real-world

dataset are four

• Treatments are nonzero (but constant) before the treatment time.

• Treatments have infinite duration. The effect persists long after the

treatment time. This is not a realistic assumption if our goal is to model

real-world drug effects.

20

Background

• Treatments are independent. This is not realistic as it is reasonable to

assume that the same drug, taken with the same dosage will have very

similar effects regardless of the administration time.

• The dosage or, more generally, the treatment’s covariates have no effect

on the treatment response.

21

3. Problem Formulation

We address the problem of treatment response curve estimation. Our goal

is to estimate the effects of a treatment or intervention on a physiological

quantity. This effect is modeled as a continuous function of time and,

optionally, of the treatment’s covariates. Estimating a treatment response

curve is used to predict the state of a patient under the administration of

drugs and other therapeutic interventions.

In this section, we will introduce the high-level components of the models

used in the methods and results sections, describe the dataset used to train

the models, and the details of the task.

3.1 Model

Let ŷ(τ) be a physiological quantity of an individual.

Let fb(τ) be a continuous function that models the baseline state, that is,

the state without any treatments or interventions. In the literature, this

is also called counterfactual trend.

Let ft(τ ; tm) be a continuous function that models the treatment response

to a treatment administered at time tm. This function is the main focus of

this dissertation and it is known in the literature as the treatment response

curve. Different treatment response curve models will have different ft

formulations.

The generative model we have chosen to model the physiological quantity

is

ŷ(τ) = fb(τ) +
∑︂
tm

ft(τ ; tm)

The treatment effects are additive both within themselves and with the

baseline function.

Let y(τ) be the noisy physiological quantity. The noise model is zero-mean

22

Problem Formulation

0 2 4 6 8 10 12
0

1

2

3

4
y()
fb()
ft(; tm)
y()

Figure 3.1. Illustration of the distinct functions in the model and how they are combined
to form the final prediction. In this example, the physiological quantity ŷ(τ)
is the sum of a sinusoidal baseline fb(τ) = sin(2πτ) and treatment response
curves ft(τ ; tm) = exp{−0.5(τ − tm − 2)2/0.52}. Two treatments are applied
at t1 = 1.5 and t2 = 5.7. Finally, y(τ) is sampled in 50 points uniformly
distributed in [0, 40], after having added i.i.d. Gaussian noise with standard
deviation σ = 0.15.

independent and identically distributed Gaussian noise.

y(τ) = ŷ(τ) + ϵ(τ)

ϵ(τ) ∼ N (0, σ2
obs)

There might be extra data associated with the treatments. We shall call it

treatment covariates and denote it with xm.

Figure 3.1 illustrates how all of the aforementioned functions come

together to form the model for treatment effects.

3.2 Data

Let τ = {τi | i = 1, 2, . . . , N} be irregularly-sampled times, sorted tempo-

rally.

Let y = {yi | τ = 1, 2, . . . , N} be noisy observations of the physiological

quantity on we wish to estimate the effect of a treatment on. Every

observation yi was performed at a time τi.

Let t = {tm | m = 1, 2, . . . ,M} be irregularly-sampled times at which a

treatment is administered. Notice that generally N ̸= M , i.e. the observa-

tions and treatments are not necessarily aligned.

Let x = {xm | m = 1, 2, . . . ,M} be treatment covariates associated with ev-

ery treatment, e.g. a drug’s dosage, the amount of carbohydrates, proteins,

and fats in a meal.

Our complete dataset D is thus a 4-tuple D = {τ,y, t,x}.

23

Problem Formulation

0 2 4 6 8 10 12 14
0

1

2

3

4
train test y()

ft(; tm)
y()

Figure 3.2. Illustration of how the model is trained on the training dataset Dtrain, and
then tested using the test dataset Dtest. The only difference between the two
datasets is that in the test dataset we do not have access to ytest. All of the
other values: time, treatment times, and treatment covariates are available.

3.3 Task

Our goal is to estimate the values of ŷ(τ), the noiseless physiological

quantity, for any future time point τtest, given new treatment times ttest and

treatment covariates xtest. We have at our disposal an historical dataset

Dtrain = {τ,train ytrain, ttrain,xtrain}. The estimate ŷ(τ) is then evaluated at

τtest and compared with ytest, the true noisy observations at τtest. In figure

3.2 we show the data used to train the model as well as the data used in

the prediction task the model is evaluated on.

3.4 Multiple individuals

So far, we have formulated the problem as if we had data about a single

individual. This formulation could also have worked with multiple individ-

uals, as long as they are treated as completely independent between each

other, in a so-called unpooled fashion.

Motivated by the fact that we will want to share data across multiple

individuals, we now introduce the notation for multiple individuals

Let P ∈ N be the number of individuals in our complete dataset.

Let p = 1, 2, . . . , P be the index of a specific individual.

Let N (p),M (p) ∈ N be number of observations and the number of treatments

for a specific individuals, respectively.

Then τ (p) ∈ RN(p) are the times for individual p’s observations y(p) ∈ RN(p)

the noisy observations. t(p) ∈ RM(p) be the treatment times. x(p) ∈ RM(p) be

the treatment covariates.

Notice how, in general N (p) ̸= N (p′). This means that the number of

observations can vary vastly between two different individuals and that

24

Problem Formulation

they are not necessarily temporally aligned.

We also define the generative model for the p-th individual, assuming no

sharing of functions.

ŷ(p)(τ) = f
(p)
b (τ)(p) +

∑︂
tm

f
(p)
t (τ ; tm)

This could also be rewritten using the formalism of Multi-Output Gaus-

sian Processes, as we will see in later chapters.

25

4. Methods

4.1 Time-Limited Treatment Responses

Here, we propose our first model for learning nonparametric treatment

response curves. Unlike the subsequent models, this model does not use

ODEs to model the dynamics of physiological quantities. Instead, the

treatment responses are modelled directly using GPs with a modified

squared exponential kernel.

4.1.1 Model Definition

We start from the generative model defined in chapter 3.

ŷ(τ) = fb(τ) +
∑︂
tm

ft(τ ; tm)

The baseline function fb is a constant, motivated by the fact that in the

dataset we are interested in modeling we see no clear patterns outside of

the ones explained by treatments.

fb(τ) = k

The treatment response function ft is a zero-mean GP with a custom

kernel kff .

ft(τ ; tm) ∼ GP(0, kff (·, ·; tm))

26

Methods

4.1.2 Non-independent treatments

Unlike the approaches we presented so far, we do not assume that the

treatment are independent between each other. On the other hand, we

assume that for all tm ∈ t, the treatment response is the same sample

from the GP. Mathematically speaking, if we assume that treatments are

independent

cov(ft(τ ; tm), ft(τ
′; tm′)) =

⎧⎪⎨⎪⎩k(τ, τ ′; tm), if m = m′

0, otherwise

whereas, in our non-independent formulation

cov(ft(τ ; tm), ft(τ ; tm′)) = k(τ, τ ′; tm, tm′).

4.1.3 Time-Limited Squared Exponential Kernel

Because the goal of the treatment response ft is to model the effects of some

drug, a regular squared exponential (SE) kernel is not enough. The main

issue is that a SE kernel generates functions that are not time-limited.

On the other hand, we expect the treatment effect to have a starting time

and a finite duration. To model this, we modify the SE kernel to generate

functions that are zero before tm and zero again after tm + T , where T is

the treatment’s duration.

To design a kernel that produces zero-valued functions we take a regular

SE kernel and then set its value to zero whenever τ, τ ′ < tm or τ, τ ′ > tm+T .

We shall call this Time-Limited Squared Exponential kernel (TLSE).

kSE(τ, τ
′) = σ2 exp

{︃
−1

2

(τ − τ ′)2

ℓ2

}︃

kTLSE(τ, τ
′; tm)

def
=

⎧⎪⎨⎪⎩kSE(τ − tm, τ ′ − tm) if tm < τ, τ ′ < tm + T

0 otherwise

The resulting covariance matrices and GP samples can be compared in

figure 4.1.

This "trick" works for any base kernel and relies on the definition of a

constant kernel.

kCONST(τ, τ
′) = σ2

27

Methods

0 5 10

0.0

2.5

5.0

7.5

10.0

kSE(,)

0 2 4 6 8 10

2

1

0

1
y()

0 5 10

0.0

2.5

5.0

7.5

10.0

kTLSE(,)

0 2 4 6 8 10
2

1

0

1

y()

Covariance matrix and GP samples
Squared Exponential vs Time-Limited Squared Exponential kernels

Figure 4.1. Comparing the covariance matrices and 3 GP samples for a Squared Expo-
nential (SE) kernel and Time-Limited Squared Exponential (TLSE) kernel.
Both kernels share the same length scale ℓ = 1. This TLSE kernel is using a
treatment time tm = 2 and treatment duration T = 6, so we expect its effect
to end at tm + T = 2 + 6 = 8. Notice the discontinuities near the times where
the treatment starts and stops its effects. In practice they do not appear to be
problematic.

This kernel will produce random constant functions (i.e. horizontal lines)

with values k ∼ N (0, σ2). By setting σ2 = 0 the normal distribution

collapses and we will always get functions with the value 0.

4.1.4 Limitations

This is the simplest model that has been developed as part of this disser-

tation. While its simplicity is an attractive factor, mainly because of how

it benefits interpretability and training performance, it is also a source of

several downsides. The main limitations we have observed are twofold:

• No knowledge of treatment covariates. Since this model does not use

any data from the treatment covariates, it will predict the same effect for

two vastly different dosages. This is especially an issue when modeling

the effect of meals, which can vary greatly in their caloric content.

• No explicit model for treatment dynamics. On the spectrum of weakly

mechanistic to strongly mechanistic models, this one clearly is closer to

the former. The only knowledge-driven modeling aspect we have used is

28

Methods

the kernel design. We would like to understand whether it is reasonable

to introduce additional knowledge of the treatment dynamics through a

Latent Force Model.

4.2 Time-Limited Latent Forces

The goal of our second model is use our knowledge about the treatment

dynamics for better treatment response estimation. We build on previous

work on Latent Force Models (LFMs) for Treatment Response Estimation,

with some crucial modifications that we believe are required for adequate

modeling of treatment.

Our main contribution is to update the existing SOTA [4] model to include

the two constraints developed in our first model.

4.2.1 Model Definition

Starting from our common generative model

ŷ(τ) = fb(τ) +
∑︂
tm

ft(τ ; tm)

we decide to use a constant baseline function fb(τ) = k.

The treatment response function ft comes directly from the LFM model.

The notation is slightly different, as the physiological quantity y is now ft,

and the latent force f is now fl. Additionally, we consider the basal rate

term B to be zero, as it does not contribute to the output kernel and can be

modelled through the mean function.

f ′
t(τ ; tm) = −Dft(τ) + Sfl(τ ; tm);

The latent function fl is modelled with a GP. Since this function de-

scribes the underlying "effect" of a treatment, our previous arguments

about causality and time-limitedness still apply. For these reasons, we do

not use a squared exponential kernel like [3] or a time-marked squared ex-

ponential kernel [4], but instead our newly developed time-limited squared

exponential kernel (TLSE).

fl(·; tm) ∼ GP(0, kTLSE(·, ·; tm))

29

Methods

Again, since we are using a linear ODE its solution is a linear functional

L of the forcing function. And since the forcing function is a GP, any linear

combination will still be a GP, albeit with a different covariance function.

We can write the analytical solution to the ODE

ft(τ ; tm) = S exp(−Dτ)

∫︂ τ

0
fl(u; tm) exp(Du)du

= L[fl(·; tm)](τ)

Finally, similar to our first model and unlike the LFM models found

in the literature, we assume that all treatments are not independent

between each other. In practice, this implies that we will have to compute

the covariance matrix for all pairs of treatment times, instead of just its

diagonal.

In figure 4.2 we can compare the covariance matrix and samples for the

latent forces and outputs between two models. The first model is a LFM

for Treatment Response Estimation discussed in the background section,

the second one is the one we have just described. We can notice that in the

Time-limited LFM output kernel, after the treatment duration is over and

the treatment’s latent force is 0, the output physiological quantity shows

exponential decay behaviour.

4.2.2 Limitations

Having now included some knowledge-driven inductive bias inside our

model, thanks to the LFM formulation, our model should, in theory, be able

to fit more complex datasets and provide better extrapolation performance

with less data. This, however comes with two big associated costs

• Knowledge-driven ODE model is wrong. This is the Achilles’ heel of

all mechanistic models. When using a purely nonparametric universal

function approximator, like a GP or a Neural Network, we do not have to

worry about biasing the system towards learning an unrealistic model.

On the other hand, by using LFMs, we are forcing the model to learn

latent functions inside a linear, inhomogeneous, constant coefficient ODE.

This is almost surely not how the underlying process we are trying to

model really works, and there is a big possibility that it is not a good

approximation either.

• Performance. The LFM output kernels, both time-marked and time-

30

Methods

limited involve heavy use of nontrivial mathematical operations such as

division, the complementary error function, and exponentiation. Addi-

tionally, since we treat all treatments as dependent, we have to evaluate

M2 times the covariance function on all N2 input points, as opposed

to the M evaluations needed to compute the independent version. Be-

cause of these two factors fitting these models becomes very compute

and memory intensive, even when using hardware accelerators such as

GPUs.

• No knowledge of treatment covariates. Like the first model, we have not

used data about the treatment covariates.

4.3 Treatment Covariates

One of the main goals of this work is to improve existing LFM for treatment

response estimation by using the information contained in treatment

covariates. We study the behaviour of scaling the treatment response

curves by a factor obtained as a function of the treatment covariates.

We extend our existing generative model by applying a scaling factor

S(xm) to the treatments

ŷ(τ) = fb(τ) +
∑︂
tm

ft(τ ; tm)

ŷ(τ) = fb(τ) +
∑︂
tm

S(xm)ft(τ ; tm)

4.3.1 Linear Scaling

Let x be the treatment covariates.

Let xm ∈ x = {x1, x2, ..., xm} be the covariates associated to one specific

treatment m. For our analysis, we will consider xm ∈ RK . Each component

xim can be, for example, the dosage of one of the active ingredients of the

drugs, or the amount of macro-nutrients in a meal.

We define the scaling function S to be a linear combination of the individ-

ual covariate components plus an intercept γ.

S
def
= βTxm + γ

31

Methods

where β ∈ RK , γ ∈ R.

4.4 Individual-level Treatment Sharing

Up to this point, all of our models have considered a single individual at a

time. We believe that the treatment responses of two separate individuals

are not completely independent between each other. Because of this,

the predictions for one individual can be improved by adding data from

multiple other individuals. We discuss how to implement a model that

incorporates information from multiple individuals using the formalism of

Multiple-Output Gaussian Processes (MOGPs).

4.4.1 Model definition

We start from the multiple-individual generative model

ŷ(p)(τ) = f
(p)
b (τ) +

∑︂
tm

f
(p)
t (τ ; tm)

and start deriving an expression for the multi-output covariance function.

That is, a function whose arguments include both a pair of times (τ, τ ′) but

also a pair of individual indices (p, p′).

cov(ŷ(p)(τ), ŷ(p
′)(τ ′))

=cov(f (p)
b (τ) +

∑︂
tm

f
(p)
t (τ ; tm), f

(p′)
b (τ ′) +

∑︂
tm′

f
(p′)
t (τ ′; tm′))

=E

⎡⎣(︄∑︂
tm

f
(p)
t (τ ; tm)

)︄⎛⎝∑︂
tm′

f
(p′)
t (τ ′; tm′)

⎞⎠⎤⎦
=
∑︂
tm

∑︂
tm′

E
[︂
f
(p)
t (τ ; tm)f

(p′)
t (τ ′; tm′)

]︂

The next steps of the derivation depend on the choices we make about

two aspects of the model. First of all, whether the treatment for the same

individuals but for two different times are independent or not. Second,

whether two treatments for two different individuals are independent or

not.

For both cases, we decide to consider all of them to be dependent, thus

∀p, p′ ∈ 1, 2, ..., P f
(p)
t = f

(p′)
t

32

Methods

4.4.2 ICM for Individual-level Treatment Sharing

We can interpret the covariance matrix that we have just build using the

framework of MOGPs.

Consider the MOGP ŷ(τ) defined as

ŷ(τ) =

⎡⎢⎢⎢⎢⎢⎢⎣
ŷ(1)(τ)

ŷ(2)(τ)
...

ŷ(P)(τ)

⎤⎥⎥⎥⎥⎥⎥⎦
Then its covariance function is a block-matrix with the following struc-

ture

cov(ŷ(τ), ŷ(τ ′)) =

⎡⎢⎢⎢⎣
cov(ŷ(1)(τ), ŷ(1)(τ ′)) ... cov(ŷ(1)(τ), ŷ(P)(τ ′))

...

cov(ŷ(P)(τ), ŷ(1)(τ ′)) ... cov(ŷ(P)(τ), ŷ(P)(τ ′))

⎤⎥⎥⎥⎦
By assuming that all treatments have the same underlying treatment

response function, i.e. the same single sample from a GP then

cov(ŷ(τ), ŷ(τ ′)) =⎡⎢⎢⎢⎢⎣
∑︁

t
(1)
m

∑︁
t
(1)

m′
k(τ (1), τ ′(1); t

(1)
m , t

(1)
m′)

. . . ∑︁
t
(P)
m

∑︁
t
(P)

m′
k(τ (P), τ ′(P); t

(P)
m , t

(P)
m′)

⎤⎥⎥⎥⎥⎦
Notice that since, in general τ (p) ̸= τ ′(p

′), that is the observations are not

homotopic, but rather heterotopic i.e. not aligned, we cannot simply take

the kernel out of the matrix via a Hadamard product.

4.4.3 Kernel

We need to extend the definition of our the kernel, since we now need to

evaluate the "cross-covariance" between treatments done on two different

individuals with different observations time τ (p), τ ′(p
′) and treatment times

t(p), t(p
′).

33

Methods

Thus, we redefine the Time-Limited Squared Exponential (TLSE) kernel

kTLSE(τ, τ
′; tm, tm′)

def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kSE(τ − tm, τ ′ − tm′) if tm < τ < tm + T and

tm′ < τ ′ < tm′ + T

0 otherwise

and with an identical argument we could redefine other base kernels too.

In figure 4.3 we can view and compare the covariance matrices generated

by the multi-output kernel. The kernel is evaluated on two individuals,

each one receiving one treatment at times 1 and 5, respectively. Hence

the treatment time vectors will be t(1) = [1], t(2) = [5]. The same procedure

is repeated with two different base kernels, a time-limited SE Kernel

and a time-limited LFM kernel. Then samples from the two individual’s

GPs are plotted on the same panel. Notice how the treatment response

functions have the same shape for the two individuals, even though they

have different starting times.

4.4.4 Hierarchical Linear Scaling Coefficients

Let us now introduce the treatment covariates in this model. We do this

by following the linear scaling approach described earlier into this chapter.

This means that our generative model will be

ŷ(p)(τ) = f
(p)
b (τ) +

∑︂
tm,xm

S(p)(xm)f
(p)
t (τ ; tm)

S(p)(xm) = (β(p))Txm + γ(p)

Deciding how much information about the coefficients β(p), γ(p) should be

shared across individuals is the differentiating factor for the next three

models.

• Unpooled. In the unpooled model, we learn a separate set of coefficients

for every individual. While allowing for the largest flexibility, this model

is also very sensitive to noise in the dataset, which could lead it to learn

unreasonable coefficients in the training phase, leading to poor predictive

performance.

Using formulas, we would write the Bayesian model as

β(p) ∼ N (µ
(p)
β , σ

(p)
β)

γ(p) ∼ N (µ(p)
γ , σ(p)

γ)

34

Methods

• Pooled The pooled model is on the opposite side of the spectrum compared

to the unpooled one. Rather than learning a separate set of parameters

for each individual, we learn a single set shared by all individuals. This

allows us to learn a very small number of parameters with a very large

number of samples, protecting us from the risk of overfitting.

β(p) ∼ N (µβ, σβ)

γ(p) ∼ N (µγ , σγ)

• Hierarchical We wish to get the best of both words with an hierarchical

model. Here, we model the coefficients as the sum of a shared component

plus individual-specific corrections. Ideally this will allow us to both learn

a robust baseline and give us enough flexibility to model patient-specific

reactions.

µ
(p)
β ∼ N (νβ, τβ)

µ(p)
γ ∼ N (νγ , τγ)

β(p) ∼ N (µ
(p)
β , σ

(p)
β)

γ(p) ∼ N (µ(p)
γ , σ(p)

γ)

35

Methods

0 5 10

0.0

2.5

5.0

7.5

10.0

kTMSE(,)

0 2 4 6 8 10
2

0

2
y()

0 5 10

0.0

2.5

5.0

7.5

10.0

kTLSE(,)

0 2 4 6 8 10

0

2
y()

0 5 10

0.0

2.5

5.0

7.5

10.0

kLFM(,)

0 2 4 6 8 10

2

0

2
y()

0 5 10

0.0

2.5

5.0

7.5

10.0

kTLLFM(,)

0 2 4 6 8 10

2

0

2

y()

Covariance matrix and GP samples
Time-Marked SE vs Time-Limited SE & LFM kernels

Figure 4.2. The four rows display the covariance matrix and GP samples from: Time-
marked Squared Exponential kernel, Time-limited Squared Exponential ker-
nel, Time-marked LFM Output Kernel, Time-limited LFM Output Kernel. All
kernels share the same length scale ℓ = 1 and treatment time tm = 3. The
time-limited kernels use a treatment duration T = 4. All LFM kernels use
decay rate D = 0.5 and sensitivity S = 1.5.

36

Methods

0 2 4 6 8 10

0

2

4

6

8

10

kTLSE(,)

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y()

0 2 4 6 8 10

0

2

4

6

8

10

kTLLFM(,)

0 2 4 6 8 10

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y()

Covariance matrix and GP samples
Time-Limited SE vs Time-Limited LFM kernel

Figure 4.3. Comparison of the covariance matrices and GP samples generated by the
multi-output kernel. The kernel is evaluated on two individuals, each one
receiving one treatment at times 1 and 5, respectively. Two base kernels are
used: a time-limited SE Kernel and a time-limited LFM kernel. Both kernels
share the same length scale ℓ = 1 and duration T = 3.5. The LFM kernel
has decay rate D = 0.9 and sensitivity S = 1.5. Samples from the GP of each
individual are plotted in the same panel, in blue and orange for individual 1
and 2, respectively.

37

5. Experiments

In this section, we demonstrate the efficacy of our methods in modeling

multiple treatment effects on two datasets, an artificial simulated dataset

and a real dataset using data from the Helsinki University Hospital.

We describe the generation procedure of the simulated dataset and the

data and preprocessing steps for the real dataset.

First, we use simulated data to discuss the shortcomings of methods

from previous works. Additionally, we show that our newly presented

methods can fit the artificial dataset successfully, achieving satisfactory

performance.

Finally, we train our newly developed methods on the real dataset and

we show empirical performance results for our method using the metrics

of prediction accuracy.

5.1 Simulated Data

5.1.1 Dataset Generation

We simulate artificial data using a Latent Force Model.

ŷ(τ) = fb(τ) +
∑︂
tm

ft(τ ; tm)

fb(τ) = 0

f ′
t(τ ; tm) = B −Dft(τ ; tm) + Sfl(τ ; tm)

fl(τ) = exp

(︃
−1

2

(τ − tm)2

12

)︃
where we have chosen the basal rate parameter B = 0, the decay rate

D = 0.2, the sensitivity S = 0.1. The treatment times are {15, 25}.

The ODE is numerically solved through SciPy’s solve_ivp routine. The

38

Experiments

numerical solution is evaluated at 100 points, which form the full dataset.

Finally, independent and identically distributed Gaussian noise is added

to every point in the dataset, with zero mean and standard deviation

σ = 0.05.

y(τ) = ŷ(τ) + ϵ(τ)

ϵ(τ) ∼ N (0, σ2)

5.1.2 Experiments

The goal of these experiments is twofold. First to verify the correctness of

model implementations. Second, to verify that the LFMs can recover the

underlying dynamics correctly.

The dataset is used to evaluate three models:

• Time-Marked Latent Force

A simplified version of model described in [4]. We choose to implement

the model described in the paper with three simplifications. We assume

that there is only one single individual. We only model one single output.

Our baseline model is the zero function, instead of a GP with a squared

exponential plus periodic kernel

• Time-Limited Treatment Response

The first model described in the methods section. The treatment re-

sponses are modeled with the newly-introduced Time-Limited Squared

Exponential (TLSE) kernel.

• Time-Limited Latent Force

The second model described in the methods section. The latent forces

are GPs using the TLSE kernel, and thus the treatment responses use a

custom Time-Limited LFM kernel.

5.1.3 Results

We plot the results of our simulated data experiments in figure 5.1.

• Time-Marked Latent Force

39

Experiments

Time

0.0

0.2

O
bs

er
ve

d

Observed functions posterior (mean and 2 interval)

0 5 10 15 20 25 30
Time

2

0

2

La
te

nt
Latent functions posterior (mean and 2 interval)

0 5 10 15 20 25 30
Time

0.0

0.2

O
bs

er
ve

d

Observed functions posterior (mean and 2 interval)

Time

0.0

0.2

O
bs

er
ve

d

Observed functions posterior (mean and 2 interval)

0 5 10 15 20 25 30
Time

0

1

La
te

nt

Latent functions posterior (mean and 2 interval)

Figure 5.1. Top group: Time-Marked Latent Force.
Top panel: the observed function’s posterior mean and 95% credible interval
is plotted on top of the observations. Bottom panel: the latent functions’
posterior mean and 95% credible interval are plotted using solid lines and
shaded areas. The true latent functions used to generate the dataset are
plotted with dashed lines.
Center group: Time-Limited Treatment Response.
The observed function’s posterior mean and 95% credible interval is plotted
on top of the observations.
Bottom group: Time-Limited Latent Force.
Top panel: the observed function’s posterior mean and 95% credible interval
is plotted on top of the observations. Bottom panel: the latent functions’
posterior mean and 95% credible interval are plotted using solid lines and
shaded areas. The true latent functions used to generate the dataset are
plotted with dashed lines.

40

Experiments

The model successfully successfully fits the dataset. Which, is expected,

as the dataset itself was generated using a latent force model.

Looking at the bottom panel we see one of the main limitations of this

methods: the first latent force (blue solid line) captures the effect of the

two treatments, while the second latent force (orange solid line) does

not. Additionally, we see that the first latent force and the second latent

forces are nonzero before the first treatment. The first latent force is

negative and the second is positive so the cumulative effect is zero. While

this fact is not an issue for fitting the data, it does not make sense when

trying to interpret the latent forces from a clinical perspective.

Furthermore, we stress the fact that since all latent forces are assumed

to be independent, it is not clear what the prediction setup would look

like.

Finally, the uncertainty of the latent forces’ means is really high. This

is not an issue per se, but we expected less uncertainty when training on

such a large amount of data. The uncertainty, again, can be explained

by the fact that forces are not limited to being zero before the effect.

Thus, the two latent forces are "fighting" each other and we see the full

spectrum of possible forces whose sum is zero.

• Time-Limited Treatment Response

The model fits the dataset, albeit the fit is worse than the other two.

Introducing a constraint on the support of the treatment responses

shows its benefits immediately with this model. The two latent forces

are not "fighting" each other anymore, which introduced a lot of variance

in the last model.

The main issue observed with the this model is due to its kernel. The

Time-Limited kernels generate discontinuous latent functions which, in

this case, make it hard to fit a dataset generated by smooth functions.

As we are directly modeling the treatment response curve with a GP,

rather than the latent forces, we do not have a second panel.

• Time-Limited Latent Force Model

The model successfully fits the dataset. Since this kernel is derived

from the LFM formulation and the dataset is generated using a LFM, we

expect the fit to be great.

Again, making the latent forces a time-limited signal is paying off

significantly. Compared to Time-Marked Latent Force, the uncertainty of

41

Experiments

the latent force posterior mean is much smaller. The smaller uncertainty

can be explained by the fact the the two latent forces almost never overlap

each other, thus the possible number of curves that explain the dataset is

much smaller than in the prior model. This hypothesis can be confirmed

by looking at the region of the plot where τ ∈ [19, 21], where the two

latent forces overlap. There the variance is much higher, resembling our

first plot.

In addition, since the two latent forces are fully dependent, rather than

being completely independent, the hypothesis space shrinks significantly

and thus the variance of the estimates does as well.

On a final note, we can observe in the bottom panel that the latent

force’s mean and the true latent force have similar shapes but different

amplitudes. There is a simple explanation for this phenomenon. Both

the latent forces’ kernel and the sensitivity parameter S control the

amplitude of the final latent force. Since there are two parameters that

influence in the same way the same quantity we end up having a non-

identifiable system. This means that, to compare the amplitude between

two different fits we may want to normalize the final sensitivities or

avoid training them altogether, and just relying on the flexibility of the

GP kernel.

From this set of experiment we can draw the following conclusions.

First, the model described in [4], while being a great foundation for

treatment response curve estimation, has two critical flaws. The first

flaw being latent forces having infinite duration and the second one is the

independence of latent forces. For these two reasons, we will not use this

model on real data.

Second, introducing a time-limited kernel and dependence between forces

greatly reduces the uncertainty of the model. For these reasons, we will

continue using these models in the second set of experiments on the real-

world glucose dataset.

42

Experiments

5.2 Glucose Data

5.2.1 Dataset

We evaluated our methods using clinical data collected at Helsinki Univer-

sity Hospital and provided by the Obesity Research Unit at the University

of Helsinki.

The dataset contains blood glucose measurements and meal macronu-

trient data of 14 non-diabetic individuals observed across three days. The

blood glucose measurements are collected by a portable continuous glucose

monitoring system at approximately every fifteen minutes. In total, there

are around 300 real-valued observations per individual.

The meal times (treatment times) and meal macronutrient contents

(treatment covariates) have been collected for all meals during the study

period. The macronutrients are five: starch, sugar, fiber, fat, and protein.

The goal is to learn the response curve associated with every meal and

to predict as accurately as possible the effects of an arbitrary meal on the

blood glucose levels.

The data is preprocessed by selecting all meals where the sum of starch

and sugar is above the threshold of 10. In our experiments, we only include

starch and sugar as treatment covariates.

Since this is a real-world dataset, there are several sources of errors, both

systematic and random. The blood glucose measurements are noisy, due to

the limitations of the sensors. Since the treatment times and covariates

are reported by the users, there are frequent reporting errors both in the

meal timing and the amount of macronutrients consumed in each meal.

Figure 5.2 displays the blood glucose trajectories as well as the associated

treatment times and covariates for the first four individuals of the dataset.

5.2.2 Evaluation Setup and Metrics

To evaluate the predictive performance the dataset is split in two folds

using a time-series holdout scheme. The training set consists of the first

two days and the test set is the third day. The models are trained on the

training set and then must predict on the test set.

The metric used for evaluation is Mean Squared Error (MSE). For every

individual p in the dataset, we compute the MSE using the true values

from the test set and the model’s predictions. All the MSEs are then

43

Experiments

averaged to obtain the mean MSE (mMSE), the metric we use to compare

models.

MSE(p) =
1

N

n∑︂
i=1

(y
(p)
i − ŷ(p)(τi))

2

mMSE =
1

P

P∑︂
p=1

MSE(p)

5.2.3 Experiments

In our experiments, we train and compare the predictive accuracy metrics

for 8 different models. We evaluate several different combinations of

kernels, treatment response curve sharing, and scaling coefficients sharing.

We begin by comparing the Time-Limited Treatment Response (TR)

model against the Time-Limited Latent Force (LF) model. The models are

trained one individual at at time, learning a separate treatment response

curve for every individual. Finally, the treatments are scaled with a linear

combination of the treatment’s covariates. The scaling coefficients can

either be fixed or a separate set is trained for every individual (unpooled).

For a visual comparison of the TR and LR models with separate curves

and unpooled coefficients see the first two panel groups of figure 5.4.

After having identified the best performing kernel, we compare four

possible methods for determining the scaling coefficients. Non-trainable

fixed coefficients, separate set of trainable coefficients for every individual

(unpooled), one set of trainable coefficients shared across all individuals

(pooled) and the finally hierarchical coefficients.

The last panel group of figure 5.4 shows the TR model with pooled

treatment response curves and pooled coefficients trained on individuals 0

and 1 at the same time.

5.2.4 Results

The goal of the first set of experiments is to identify the best performing

kernel. We report our results in table 5.1. Our results found evidence that,

for this dataset, the Time-Limited Treatment Response model’s errors

are lower than the Time-Limited Latent Force model. Additionally, we

have found that learning the hyperparameters of the Latent Force model

is challenging and that the optimization’s results heavily depend on the

initial conditions. This is because even small changes in the ODE parame-

44

Experiments

ters such as the decay rate or the sensitivity cause big variations in the

response curve’s shape and magnitude.

In light of the kernel comparison results, we run a second set of ex-

periments using the best performing kernel, i.e. the TR kernel. From

this experiment, we find that sharing the same treatment response curve

across individuals performs better than learning a separate curve for every

individual.

We claim that the shared models perform better than the separate ones

because of the superior robustness to noise of the shared models. This

claim is supported by our comparison of per-individual MSEs. We compare

two models with identical kernel and scaling coefficients but the first model

learns separate response curves while the second uses shared ones.

In figure 5.3 we see a comparison of the Mean Squared Errors (MSEs) for

every individual. The top panel compares the MSEs of two TR models with

fixed scaling coefficients. The bottom panel compares the MSEs of two TR

models with unpooled scaling coefficients. For fixed scaling coefficients,

the performance of the two models is comparable for all individuals except

individuals 4 and 5. For unpooled scaling coefficients, the performance

is also comparable for most individuals but there is more variance in

the performance differences, attributable to the higher flexibility of the

unpooled model than the fixed one.

Finally, after having determined the best-performing kernel and treat-

ment response curve sharing method, we focus our attention on how to

share the scaling coefficients. Our experiments show that all scaling coeffi-

cients sharing methods have similar performance, with the pooled model,

which learns one set of coefficients for all individuals having the lowest

error. Again, we claim that the the pooled model works better because of

its superior noise robustness compared to the alternatives.

45

Experiments

Kernel Treatment Response Curve Scaling Coefficients mMSE

TR separate fixed 0.640
TR separate unpooled 0.641
LF separate fixed 0.670
LF separate unpooled 1.221
TR shared fixed 0.572
TR shared unpooled 0.573
TR shared pooled 0.564
TR shared hierarchical 0.568

Table 5.1. Prediction results on test data. The mean Mean Squared Error (mMSE) is
computed for the models described in our method. The best performing model
uses a Time-Limited Treatment Response kernel, shared treatment response
curve, and a single set of scaling coefficients for all patients (unpooled scaling
coefficients).

46

Experiments

0 500 1000 1500 2000 2500 3000 3500 4000

4

5

6

Individual 0

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

0 500 1000 1500 2000 2500 3000 3500 4000

5

6

Individual 1

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000

4

6

Individual 2

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

0 500 1000 1500 2000 2500 3000 3500 4000

4

6

8

Individual 3

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

Figure 5.2. Visualization of the 3-days of blood glucose dataset. For each pair of panels,
the top panel displays the blood glucose observation time-series with black
signs joined by solid gray lines. The treatment times appear on all panels as
solid black vertical lines. The bottom panels displays the treatment covariates
associated with every treatment. Areas overlaid in gray are the testing set
where the model is evaluated, the remainder is the training set.

47

Experiments

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Individual

0

1

2

M
ea

n
S

qu
ar

ed
 E

rr
or

Fixed Scaling Coefficients

Separate
Shared
Separate - Shared

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Individual

0

1

2

M
ea

n
S

qu
ar

ed
 E

rr
or

Unpooled Scaling Coefficients

Separate
Shared
Separate - Shared

Error comparisons for Time-Limited Treatment Responses model

Figure 5.3. Comparison of the Mean Squared Errors (MSEs) for every individual. The top
panel compares the MSEs of two TR models with fixed scaling coefficients and
the bottom panel compares the MSEs of two TR models with unpooled scaling
coefficients.
The difference Separate − Shared is plotted and, as expected, it is positive in
most individuals, consistent with the lower mMSE of the shared model.

48

Experiments

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

0 500 1000 1500 2000 2500 3000 3500 4000

4

5

6

Patient 0

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

0 500 1000 1500 2000 2500 3000 3500 4000

4

5

6

Patient 0

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

20

40

0 500 1000 1500 2000 2500 3000 3500 4000
0

50

100

0 500 1000 1500 2000 2500 3000 3500 4000

4

5

6

Patient 0

0 500 1000 1500 2000 2500 3000 3500 4000
4

5

6

Patient 1

(c)

Figure 5.4. Prediction of blood glucose level after a meal. (a): results from the Time-
Limited Treatment Response method trained separately on patient 0 and
using unpooled scaling coefficients. (b): results from the Time-Limited Latent
Force method trained separately on patient 0 and using unpooled scaling
coefficients. (c): results from the Time-Limited Treatment Response method
trained at the same time on patients 0, 1 and using pooled scaling coefficients.49

6. Discussion

This final section contains a summary of the results and the conclusions

we have drawn from the experiments. Then, we propose some directions

for future research and finally, we consider the potential impact of our

work.

6.1 Summary of results

We have verified the correctness of our implementations of methods from

related works and of our proposed methods on a simulated dataset. The

dataset is simulated using a LFM, which allows us to verify that the Time-

Marked Latent Force (TMLF) and Time-Limited Latent Force (TLLF)

models can indeed recover the original latent forces.

Through this experiment we identify two limitations of the TMLF model:

The latent forces are not limited in time, which causes the latent forces

of two different treatment to overlap each other. The latent forces are

independent, which forbids us from using the model for prediction forward

in time.

On the other hand, the results obtained by the Time-Limited Treatment

Response (TLTR) and Time-Limited Latent Force models are satisfactory

and thus we select these models for the next stage.

We evaluate the models on a blood glucose prediction task using real

data collected by the Helsinki University Hospital. Our experiments show

that the TLTR model has better predictive performance, faster training

time, and higher noise robustness than the TLLF model.

The experiments on real data continue by evaluating the impact of

sharing the treatment responses and scaling coefficients across multiple

individuals for the TLTR model. We find that sharing the response curve

improves the predictive performance and that using a single set of scaling

50

Discussion

coefficients for the whole group of individuals results in the best performing

model. We claim that superior performance of the shared model is due to

the higher robustness of the model to noise and errors in the data.

6.2 Directions for the future

The overarching conclusion from our experiment is that, on dataset with

large amounts of noise and errors, simpler models work better than more

sophisticated one due to more noise robustness. We hope to repeat these

experiments on additional datasets with smaller amounts of data but also

smaller noise, to see if the knowledge-driven inductive bias of LFMs can

help in those situations.

On a more technical note, we are interested in evaluating new methods

for scaling the treatment response curve using treatment covariates. For

example, using nonlinear models such as logistic-regression or neural

networks. Additionally, given recent advancements in variational inference

techniques and automatic differentiation, we believe that it is possible to

successfully extend our model to nonlinear ODEs.

Finally, our experiments relied on Maximum a Posteriori (MAP) optimiza-

tion to find the kernel hyperparameters. Ideally, we would use Markov

Chain Monte Carlo (MCMC) techniques for estimating them, in order

to obtain credible intervals on the hyperparameters and, in general, to

achieve more robust predictions. That will probably require improving

the performance of our log-likelihood evaluations significantly, which we

believe is possible by using sparse GP techniques such as inducing points.

6.3 Possible impact

The results achieved in our experiments provide useful insights for future

research in individualized treatment response estimation. While showing

that highly flexible models like GPs can indeed estimate plausible treat-

ment response curves, our results also come with a word of caution on

using such high capacity methods on datasets with such high amounts of

noise.

We believe that the methods we developed, even if not used directly for

treatment response estimation, can be used as a guiding tool for developing

more physiologically accurate parametric treatment curves.

51

Discussion

On a broader level, our goal is to participate in the advancement of the

field of precision medicine. By providing clinicians with better tools to

estimate the future state of their patients, we hope that they can make

decision that improve the quality of health care and the quality of life of

those who need it.

52

Bibliography

[1] Boyce et al. Elementary Differential Equations and Boundary Value

Problems. Wiley, 2017. ISBN: 9781119443766. URL: https://books.

google.fi/books?id=SyaVDwAAQBAJ.

[2] Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels

for Vector-Valued Functions: a Review. 2011. DOI: 10.48550/ARXIV.1106.

6251. URL: https://arxiv.org/abs/1106.6251.

[3] Mauricio Álvarez, David Luengo, and Neil D. Lawrence. “Latent Force

Models”. In: Proceedings of the Twelth International Conference on

Artificial Intelligence and Statistics. Ed. by David van Dyk and Max

Welling. Vol. 5. Proceedings of Machine Learning Research. Hilton

Clearwater Beach Resort, Clearwater Beach, Florida USA: PMLR,

2009, pp. 9–16. URL: https://proceedings.mlr.press/v5/alvarez09a.html.

[4] Li-Fang Cheng et al. “Patient-Specific Effects of Medication Using

Latent Force Models with Gaussian Processes”. In: Proceedings of

the Twenty Third International Conference on Artificial Intelligence

and Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108.

Proceedings of Machine Learning Research. PMLR, 2020, pp. 4045–

4055. URL: https://proceedings.mlr.press/v108/cheng20c.html.

[5] Neil Lawrence, Guido Sanguinetti, and Magnus Rattray. “Modelling

transcriptional regulation using Gaussian Processes”. In: Advances in

Neural Information Processing Systems. Ed. by B. Schölkopf, J. Platt,

and T. Hoffman. Vol. 19. MIT Press, 2006. URL: https://proceedings.

neurips.cc/paper/2006/file/f42c7f9c8aeab0fc412031e192e2119d-Paper.pdf.

[6] Jacob D. Moss et al. Approximate Latent Force Model Inference. 2021.

DOI: 10.48550/ARXIV.2109.11851. URL: https://arxiv.org/abs/2109.11851.

53

https://books.google.fi/books?id=SyaVDwAAQBAJ
https://books.google.fi/books?id=SyaVDwAAQBAJ
https://doi.org/10.48550/ARXIV.1106.6251
https://doi.org/10.48550/ARXIV.1106.6251
https://arxiv.org/abs/1106.6251
https://proceedings.mlr.press/v5/alvarez09a.html
https://proceedings.mlr.press/v108/cheng20c.html
https://proceedings.neurips.cc/paper/2006/file/f42c7f9c8aeab0fc412031e192e2119d-Paper.pdf
https://proceedings.neurips.cc/paper/2006/file/f42c7f9c8aeab0fc412031e192e2119d-Paper.pdf
https://doi.org/10.48550/ARXIV.2109.11851
https://arxiv.org/abs/2109.11851

Bibliography

[7] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian

processes for machine learning. Adaptive computation and machine

learning. MIT Press, 2006, pp. I–XVIII, 1–248. ISBN: 026218253X.

[8] S.M. Ross. Introduction to Probability and Statistics for Engineers

and Scientists, Student Solutions Manual. Fourth. Elsevier Science,

2009. ISBN: 9780080919423. URL: https://books.google.co.in/books?

id=p3zNCgAAQBAJ.

54

https://books.google.co.in/books?id=p3zNCgAAQBAJ
https://books.google.co.in/books?id=p3zNCgAAQBAJ

	Abstract
	Contents
	Introduction
	Background
	Gaussian Processes
	Definition
	Covariance functions
	Prediction
	Marginal Likelihood

	Multi-Output Gaussian Processes
	Introduction
	Intrinsic Coregionalization Model

	Ordinary Differential Equations
	Definition
	Linear ODEs
	Exact solutions for 1st-order linear ODEs

	Latent Force Models
	Definition
	Output kernel
	Output-latent kernel

	LFMs for Treatment Response Estimation
	Model definition
	Time-marked Latent Forces
	Output kernel
	Limitations

	Problem Formulation
	Model
	Data
	Task
	Multiple individuals

	Methods
	Time-Limited Treatment Responses
	Model Definition
	Non-independent treatments
	Time-Limited Squared Exponential Kernel
	Limitations

	Time-Limited Latent Forces
	Model Definition
	Limitations

	Treatment Covariates
	Linear Scaling

	Individual-level Treatment Sharing
	Model definition
	ICM for Individual-level Treatment Sharing
	Kernel
	Hierarchical Linear Scaling Coefficients

	Experiments
	Simulated Data
	Dataset Generation
	Experiments
	Results

	Glucose Data
	Dataset
	Evaluation Setup and Metrics
	Experiments
	Results

	Discussion
	Summary of results
	Directions for the future
	Possible impact

